高性能，副边同步整流功率开关

主要特点

- 反激拓扑副边同步整流功率开关
- 支持断续工作模式（DCM）和准谐振工作模式 （QR）
- $\quad<300 \mathrm{uA}$ 超低静态电流
- 内置 40V 功率 MOSFET
- 内部集成保护：

■ VDD 欠压保护（UVLO）
■ VDD 电压钳位（ $>5 \mathrm{~mA}$ 钳位电流）

- 仅支持负端接法，输出供电
- 封装类型 SOP－8

典型应用

- 反激变换器
- 充电器

典型应用电路

定购信息

定购型号	封装	包装形式	
CHP5011A	SOP8	编带	4000
颗／盘			
CHP5011B	SOP8	编带	4000
颗／盘			
CHP5011C	SOP8	编带	4000
颗／盘			
CHP5011D	SOP8	编带	4000
颗／盘			

管脚封装

图2 管脚封装图

极限参数（注 1）

符号	参数	参数范围	单位
D	内置同步整流 MOS 管漏端	$-0.3 \sim 40$	V
VCC	电源电压	$-0.3 \sim 8$	V
$\mathrm{P}_{\mathrm{DMAX}}$	工㑍毛（注 2） $\mathrm{Ta}=25^{\circ} \mathrm{C}$	2.6	W
θ_{JA}	PN结到环境的热阻	96	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC}	PN结到管壳的热阻	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{J}	工作结温范围	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	储存温度范围	-55 to 150	${ }^{\circ} \mathrm{C}$
	ESD（注 3）	2	KV

注1：最大极限值是指超出该工作范围，芯片有可能损坏。推荐工作范围是指在该范围内，器件功能正常，但并不完全保证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数规范。对于未给定上下限值的参数，该规范不予保证其精度，但其典型值合理反映了器件性能。
注2：温度升高最大功耗一定会减小，这也是由 $T_{\mathrm{JMAX}}, \theta_{\mathrm{JA}}$ ，和环境温度 T_{A} 所决定的。最大允许功耗为 $P_{D M A X}=\left(T_{J M A X}-\right.$ $\left.\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$ 或是极限范围给出的数字中比较低的那个值。

CHP5011X

电气参数（注 4，5）（无特别说明情况下， $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ）

符号	描述	条件		最小值	典型值	最大值	单位
电源电压							
$\mathrm{V}_{\text {CC }}$	V_{CC} 工作电压	Drain＝20V			5.5		V
$\mathrm{V}_{\text {CC＿on }}$	V_{CC} 启动电压	V_{CC} 上升			3.6		V
$\mathrm{V}_{\text {CC＿UVLo }}$	V_{CC} 欠压保护阈值	$\mathrm{V}_{\text {CC }}$ 下降			3.2		V
IST	$\mathrm{V}_{\text {CC }}$ 启动电流	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {CC－ON }}-0.5 \mathrm{~V}$			50		uA
Icc	V_{CC} 工作电流				120		uA
Vcc＿clamp	$\mathrm{V}_{\text {CC }}$ 针位电压	$\mathrm{I}_{\mathrm{CC}}=40 \mathrm{~mA}$			7.0		V
功率管							
RDs＿on	功率管导通阻抗	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{DS}}=6 \mathrm{~A} \end{gathered}$	CHP5011A		25		$\mathrm{m} \Omega$
			CHP5011B		15		$\mathrm{m} \Omega$
			CHP5011C		10.5		$\mathrm{m} \Omega$
			CHP5011D		7		$\mathrm{m} \Omega$
BV ${ }_{\text {DSs }}$	内置功率管击穿电压	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} / \mathrm{IDS}=25 \mathrm{uA}$		40			V
$I_{\text {Peak }}$	内置功率管最大峰值电流	$\mathrm{TJ}=25^{\circ} \mathrm{C}$			30		A
ID	内置功率管导通电流	$\mathrm{TJ}=25^{\circ} \mathrm{C}$			8		A

应用信息

CHP5011 是一款高性能的副边同步整流芯片，集成同步整流 MOS，适用于隔离型的同步整流应用。 CHP5011采用专利的原边开通判定和副边断续预判定技术，可以有效的避免因激磁振荡引起的驱动芯片误动作。

D 脚与 GND 脚之间可以加 RC 吸收回路

与肖特基续流管一样，加 RC 吸收回路，便于调试 EMI。

保护功能

CHP5011集成了 VCC 欠压保护，过压钳位，以及驱动脚去干扰等技术。

PCB 设计
在设计 CHP5011 PCB 时，需要遵循以下指南：
VCC 的旁路电容紧靠芯片 VCC 管脚和 GND 管脚。
增加 D 引脚的铺铜面积以提高芯片散热。

SOP－8

尺寸对照表

符号	公制		英制	
	Min	Max	Min	Max
A	1.35	1.75	0.053	0.069
A1	0.1	0.25	0.004	0.01
A2	1.35	1.55	0.053	0.061
b	0.33	0.51	0.013	0.02
c	0.17	0.25	0.006	0.01
D	4.7	5.1	0.185	0.2
E	3.8	4	0.15	0.157
E1	5.8	6.2	0.228	0.244
e	$1.270(B S C)$		$0.050($ BSC $)$	
L	0.4	1.27	0.016	0.05
θ	0°	8°	0°	8°

声明

基合半导体确保以上信息准确可靠，同时保留在不发布任何通知的情况下对以上信息进行修改的权利。使用者在将基合半导体 的产品整合到任何应用的过程中，应确保不侵犯第三方知识产权；未按以上信息所规定的应用条件和参数进行使用所造成的损失，基合半导体不负任何法律责任。

